1.

Figure 2

Figure 2 shows a sketch of part of the curve with equation

$$y = \left(\ln x\right)^2 \qquad x > 0$$

The finite region R, shown shaded in Figure 2, is bounded by the curve, the line with equation x = 2, the x-axis and the line with equation x = 4

The table below shows corresponding values of x and y, with the values of y given to 4 decimal places.

		<u> </u>	4-3.750.5		
X	2	2.5	3	3.5	4
у	0.4805	0.8396	1.2069	1.5694	1.9218

h=0.50

(3)

- (a) Use the trapezium rule, with all the values of y in the table, to obtain an estimate for the area of R, giving your answer to 3 significant figures.
- (b) Use algebraic integration to find the exact area of R, giving your answer in the form

$$y = a\left(\ln 2\right)^2 + b\ln 2 + c$$

where a, b and c are integers to be found.

a)
$$R = \int_{0}^{4} (\ln x)^{2} dx \approx \frac{0.5}{2} \left[0.4805 + 1.9218 + 2(0.8396 + 1.2669 + 1.5694)\right]$$

$$= 2.41 \left(3sF\right)$$

b) $R = \int (\ln x)^2 dx$	by parts: Ju dv dx = uv - Jv du dx
2	

tind (Ina) doc	I sinx dx
let $u = (\ln x)^2 \frac{dv}{dx} = 1$	let $u=1/nx$ $\frac{dv}{dx}=1$
$\frac{dh_2 2 \ln x}{dx} V = x$	$\frac{dv_{-1}}{dx} = \frac{dx}{x}$
$\int (\ln x)^2 dx = x(\ln x)^2 - 2 \int \ln x dx$	$\int nxdx = x nx - \int 1 dx$
	$= x \ln x - 2c$

$$\int (\ln x)^2 dx = x(\ln x)^2 - 2(x \ln x - x)$$

$$= x(\ln x)^2 - 2x \ln x + 2x \quad 0$$

$$R = \int (\ln x)^{2} dx = \left[x(\ln x)^{2} - 2x \ln x + 2x \right]_{2}^{4}$$

$$= 4 \left[\ln 4 \right]^{2} - 8 \ln 4 + 8 - 2 \left(\ln 2 \right)^{2} + 4 \ln 2 - 4$$

$$= 4 \left[2 \ln 2 \right]^{2} - 16 \ln 2 - 2 \left(\ln 2 \right)^{2} + 4 \ln 2 + 4 \right]$$

$$= 16 \left(\ln 2 \right)^{2} - 12 \ln 2 - 2 \left(\ln 2 \right)^{2} + 4$$

$$= 14 \left(\ln 2 \right)^{2} - 12 \ln 2 + 4 \right]$$

$$= 14 \left(\ln 2 \right)^{2} - 12 \ln 2 + 4 \right]$$

$$= 14 \left(\ln 2 \right)^{2} - 12 \ln 2 + 4 \right]$$

2. The table below shows corresponding values of x and y for $y = \log_3 2x$

The values of y are given to 2 decimal places as appropriate.

X	3	4.5	6	7.5	9
у	1.63	2	2.26	2.46	2.63

(a) Using the trapezium rule with all the values of y in the table, find an estimate for

$$\int_3^9 \log_3 2x \, \mathrm{d}x$$

(3)

Using your answer to part (a) and making your method clear, estimate

(b) (i)
$$\int_{3}^{9} \log_{3}(2x)^{10} dx$$

(ii)
$$\int_3^9 \log_3 18x \, \mathrm{d}x$$

(3)

a)
$$\int_{3}^{9} \frac{\log_{3} 2x \, dx}{2} \frac{1.5}{2} \frac{1.63 + 2.63 + 2(2 + 2.26 + 2.46)}{1.63 + 2.63 + 2(2 + 2.26 + 2.46)}$$

b) i)
$$\int_{3}^{9} \log_{3}(2x)^{10} dx = 10 \int_{3}^{9} \log_{3}(2x) dx$$

(3)

3. A continuous curve has equation y = f(x).

The table shows corresponding values of x and y for this curve, where a and b are constants.

							h=4-3.8
x	3	3.2	3.4	3.6	3.8	4	= 0.2 1
У	а	16.8	b	20.2	18.7	13.5	

The trapezium rule is used, with all the y values in the table, to find an approximate area under the curve between x = 3 and x = 4

Given that this area is 17.59
(a) show that
$$a + 2b = 51$$

$$\int_{0}^{h} f(x) dx = \frac{1}{2}h \left[(y_0 + y_n) + 2(y_1 + \dots + y_{n-1}) \right]$$
where $h = \text{interval size}$
(3)

Given also that the sum of all the y values in the table is 97.2

(b) find the value of a and the value of b

a)
$$\frac{0.2}{2}$$
 (a+13.5+2[16.8+6+20.2+18.7]) = 17.59 (1)

$$a + 2b + 111.4 + 13.5 = 175.9$$

b)
$$a + 16.8 + 6 + 20.2 + 18.7 + 13.5 = 97.2$$
 0 $a + 6 = 28$ 0

solve () and (2) simultaneously using calculator

$$a = 5$$
 (1) $b = 23$ (1) handworlden method:
① $a + 2b = 51$
② $a + b = 28$
② $-0 \Rightarrow b = 23$
 $a + b = 28 \Rightarrow a = 28 - b$
 $a + b = 28 \Rightarrow a = 28 - b$